Chiral Nitrone Reagents for Cycloaddition Reactions Raymond C. F. Jones* and Jason N. Martin

Department of Chemistry, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom

Paul Smith

SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Harlow, Essex CM19 5AW, United Kingdom

The preparation and cycloaddition reactions of new imidazoline nitrones are described. The imidazo-[1,2-b]isoxazole alkene cycloadducts are formed *via* an *exo* approach. An example has been tranformed into a pyrrolo[1,2-a]imidazole as a prelude to a new pyrrolidine synthesis.

J. Heterocyclic Chem., 37, 481 (2000).

Introduction.

1,3-Dipolar cycloadditions offer routes to a wide range of heterocyclic targets with multiple stereogenic centres. Their utility depends largely on the potential for asymmetric induction *via* their highly ordered transition states. As part of an ongoing programme to develop chiral nonracemic heterocycloaddition reagents based on the imidazoline moiety [1-3], we have prepared the imidazoline nitrones 2 which are facially differentiated by virtue of the chiral templating nitrone *N*-substituent being constrained within a heterocyclic ring.

This lecture will present the context and background to our work, as an extension of our earlier synthesis of imidazolinium ylides 1 and their application to the assembly of homochiral pyrrolidines. We will describe an initial unsuccessful approach to the key intermediate N-(2-aminoethyl)hydroxylamine 3, based on 2-phenylglycine, that was thwarted by easy oxidation of the hydroxylamine, and then our successful synthesis from 2-chloroacetophenone.

The results of cycloaddition studies will then be outlined. Alkyne dipolarophiles gave cycloadducts that underwent subsequent ring transformations. Electron-deficient alkene dipolarophiles did afford the expected (but rarely reported) imidazo[1,2-b]isoxazoles via an exo mode of approach to the dipole; the predominant regiochemistry favoured the dipolarophile activating group leading to 4-substitution in the isoxazolidine portion. The dimethyl 1,4-butyndioate cycloadduct has been transformed into a pyrrolo[1,2-a]imidazole by N-O cleavage and recyclisation, which opens a new and diastereoselective route to pyrrolidines.

- 1. Pyrrolidines and piperidines are important.
- For example, some biologically active natural products:

482 Vol. 37

2. Five-membered rings by azomethine ylide cycloaddition.

- Homochiral R substituent employed to induce asymmetry in the pyrrolidine.
- We use a 2-imidazoline as the template for the optically active dipole.

- Three (out of five) bonds of the new 5-membered ring (as indicated) are formed in one-pot.
- 3. Optically active pyrrolidines.

4. A chiral nitrone 1,3-dipole?

$$CH_2Ph$$
 CH_2Ph
 CH_2Ph

Issues to consider

- Availability of the nitrone?
- · Reactivity of the imidazoline nitrone?
- · Regiochemistry of the cycloadditions?
- endo vs. exo Approach of dipole and dipolarophile?
- · Facial selectivity of the dipole?
- Template removal from the cycloadducts?

• The proposed N-O cleavage/recyclisation strategy for use of the imidazole[1,2-b]isoxazole cycloadducts:

- 5. Retrosynthesis precursors.
- Direct oxidation of 2-imidazoline unsuccessful.
- 2-Hydroxylamino-amine 3 as key precursor.
- Original plan: to use phenylglycine as precursor.
- Other possible "PhCC" precursors: 2-chloroacetophenone or benzoylformic acid.

6. From phenylglycine?

HN-OH

483

- Racemization of the 2-bromo-acid observed!!
- Disproportionation and/or oxidation of the 2-hydroxylamino-amide occurs.
- Alternative substitution by H₂NOCH₂Ph very slow.

7. Nitrones from 2-chloracetophenone.

- The nitrone R = H is used directly.
- The material is racemic; potential for optically active nitrones can be envisaged: Using O-chiral hydroxylamines to form the oximes,
 - or using chiral borane reducing agents.
- The corresponding O-benzylhydroxylamino-amine suffers N-O cleavage before debenzylation.
- 8. Reactions with alkyne dipolarophiles.
- Products explained by 1,3-dipolar cycloaddition followed by 1,5-H shift, C-to-N.

9. Reactions with alkene dipolarophiles (i).

- · Cycloaddition is face-selective.
- Imidazo[1,2-b]isoxazole cycloadducts derived from exo mode of approach.
- Best yields are with 2 mol equiv. base present.
 - n.b. nitrone precursor is hydroxylamino-amine•2 HCl.
- Relative stereochemistry from nOe studies and X-ray crystal structure; transition state model as illustrated:

May-Jun 2000 485

10. Reactions with alkene dipolarophiles (ii): Symmetrical alkenes.

- 11. Reactions with alkene dipolarophiles (iii): Unsymmetrical monosubstituted alkenes.
- Regiochemistry: Usually 4-substituted isoxazolidines;
 Consistent with FMO control: HOMO(dipole)-LUMO(dipolarophile); Sustmann Type I,
 Methacrylate esters give 5-substituted isoxazolidines; now steric control?

- Reactions are with electron-deficient alkenes; no cycloadditions seen with electron-rich alkenes.
- 12. Reactions with alkene dipolarophiles (iv): An unsymmetrical 1,2-disubstituted alkene.
- 2(5H)-Furanone: An unsymmetrical 1,2-diffunctional dipolar ophile; Potential for N—O cleavage and recyclisation?

- 13. Template removal.
- Using 4,5-difunctional isoxazolidines, a pyrrolo[1,2-a]imidazole lactam has been prepared:

• X-Ray crystal structure of lactam confirms stereochemistry conserved.

• Template removal, as in the azomethine ylide work (see earlier, [1-3]), should lead to pyrrolidinones.

Conclusions.

We thus have developed a new chiral nitrone 2, based on the imidazoline system, and explored its reactivity with a view to generating a new stereoselective route to pyrrolidines. The primary cycloadducts are imidazo[1,2-a]-isoxazoles, a largely unexplored ring system.

Acknowledgements.

- Engineering and Physical Science Research Council (EPSRC)
- · SmithKline Beecham Pharmaceuticals
- · The Open University

- EPSRC National X-Ray Crystallography Service, Cardiff & Southampton
- EPSRC National Mass Spectroscopy Service, Swansea

REFERENCES AND NOTES

- [1] R. C. F. Jones, K. J. Howard and J. S. Snaith, *Tetrahedron Letters*, 37, 1707 (1996); R. C. F. Jones, K. J. Howard and J. S. Snaith, *Tetrahedron Letters*, 37, 1711 (1996).
- [2] R. C. F. Jones, K. J. Howard and J. S. Snaith, *Tetrahedron Letters*, 38, 1647 (1997).
- [3] R. C. F. Jones, K. J. Howard, J. R. Nichols and J. S. Snaith, J. Chem. Soc., Perkin Trans. 1, 2061 (1998).